

ISO 5011 Test Results

Certified to the ISO 5011 Air Filtration Standard

Cold Air Intake Kit

2004-07 Ford F150 V8 5.4L

Part Numbers: 75-5016 (Cotton Filter) 75-5016D (Dry Filter)

S&B Filters, Inc. • 787 South Wanamaker Avenue • Ontario, California 91761 • (909) 947-0015 • (909) 947-0603 • www.sbfilters.com

ISO 5011, Second Edition Air Filter or Intake Kit Test Report

The test data presented in the following report represents the restriction of airflow, efficiency and dust loading capacity. The filters tested were procured from various distributors or provided by customers. The tests were performed in accordance with ISO 5011. The following were measured in accordance with the test: (1) Pressure Drop for Clean Element, Initial Efficiency and Dust Loading Capacity. The Flow Rate used to conduct the Dust Loading and Capacity test(s) is listed under the *Average Environmental Conditions and Test Specifications*. PTI ISO Course Test Dust was utilized and the particle data sheet for the batch is attached.

The test sequence begins with measuring the pressure drop of a clean filter as a function of the airflow rate which is measured in cubic feet per minute (CFM). Subsequently, the cumulative efficiency and dust loading capacity are measured. The termination point when measuring for capacity is shown at the bottom of the report under the heading *Termination* P . The results of the tests are recorded in the top table and charts shown on the next page. The filters are inspected before and after the tests are performed.

The Top Table demonstrates the results of the testing for up to three (3) samples per filter type (part number). The Efficiency represents the amount of dust (contaminants) that was stopped by the filter during each test. The Capacity measures the dust holding capability of the filter.

During the test, the filter is loaded with dust until it reaches a terminal pressure drop increase of 10 inches of water (28"H2O for Heavy Duty Vehicles) across the filter element (please refer to the Average Environmental Conditions and Test Specifications at the bottom of the next page to verify the pressure drop utilized on this particular test).

The Line Graph shows the pressure drop as a function of the airflow rate for the clean filter(s). The computer controlled test equipment initiates the test at close to zero (0) cubic feet per minute (CFM) and then increases the CFM gradually until the CFM termination point is reached. During the test, the restriction of the filter is measured in inches of water ("H2O) as it relates to the air flow rate (CFM). Visual inspections of filters are performed to insure against dust leakage and manufacturing flaws.

The Bar Graph illustrates the cumulative efficiency for the filter(s) tested.

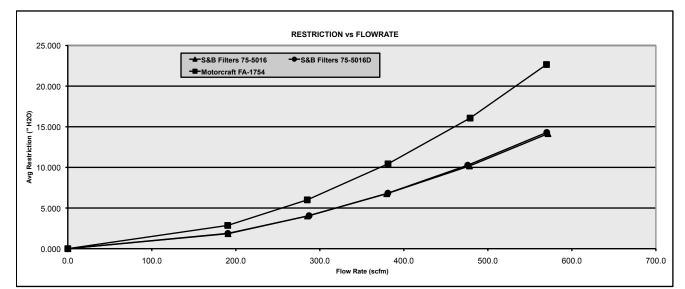
Definition of Terms & Test Protocol

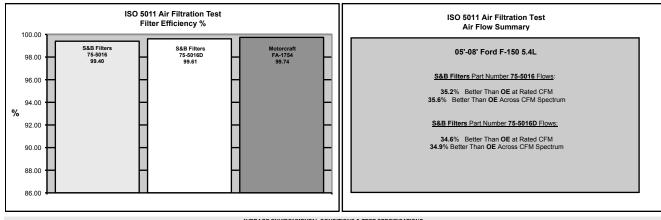
Restriction

Restriction measures how difficult it is for the air to get through the filter and is measured in inches of H2O. Instead of referring to restriction, the industry uses "air flow" to describe the effect of restriction. They say for example, that a High Performance Filter "flows better" than the OEM paper filter. On a line graph, the lower the restriction of a filter the better the air flow.

Efficiency

Efficiency is measured in % and is the amount of dirt/contaminants that the filter stops from going into the engine.


Capacity


Capacity is the total amount of contaminants/dirt the filter will hold before reaching its termination point. The termination point is a predefined restriction point that is used as the cut-off point when measuring how much dirt a filter will hold. For typical vehicles, 10"H2O is used at the termination point. For heavy duty trucks, this number is 28"H2O.

Note: Testing was conducted based on the ISO 5011 testing standard; however, variances from the actual test procedures may exist. The intent of the testing is to show comparative test results between various products that are intended for similar use. Tests are conducted under a climate controlled environment; however, changes in temperature and humidity between tests may occur which could alter the actual test results. ISO 5011Test Results Explanation - Course Test Dust.doe

ISO 5011 Air Filtration Standard Intake Kit Comparison S&B Filters75-5016 Test Number 329

Air Filter Mfg. & Part #	INITIAL RESTRIC. ("H2O)	CAPACITY (grams)	EFFICIENCY (%)	Air Flow scfm	Net Restriction (Inches of H2O)	% Less Restrictive than FA-1754Motorcraft
Filter #1 S&B Filters 75-5016	2.3	234.0	99.40	0.0 190.7 285.3	0.000 1.842 4.020	0.0% 35.6% 33.0%
				379.6 478.1 571.6	6.758 10.173 14.146	35.2% 36.7% 37.6%
Filter #2 S&B Filters 75-5016D	2.4	296.7	99.61	0.0 190.5 287.2	0.000 1.879 4.053	0.0% 34.3% 32.5%
				381.0 476.0 570.1	6.829 10.271 14.302	34.6% 36.1% 36.9%
Filter #3 Motorcraft FA-1754	9.8	128.8	99.74	0.0 190.3 285.0	0.000 2.859 6.004	
				381.1 478.8 569.8	10.435 16.065 22.657	

AVERAGE ENVIRONMENTAL CONDITIONS & TEST SPECIFICATIONS					
Temperature:		deg F	Housing:	uni con	
Relative Humidity:	50.30	%	Contaminant:		
Baro Pressure:	28.93	mmHg	Contam. Lot #:		
Test Stand:	# 1		Dust Feed Rate:	10.67	grams/minute
Inlet Size:	3.75	inches	Rated Flow:	381	cfm

Testing was conducted based on the ISO 5011 Air Filtration standard.

S&B PERFORMANCE FILTERS & INTAKE KITS

Determination of Gasoline and Diesel Engine Air Consumption

CFM Calculator: Enter Data in Blue Shaded Areas		Liters to	CID Converter
Engine Displacement (cubic inches)	329.5	Liters:	
RPM at maximum horse power	5,000	Cubic Inches:	32
Cycle Factor:	2		·
Enter "2" for 4 Cycle Diesel and Gasoline		Vehicle	Information
Enter "1" for 2 Cycle Diesel and Gasoline		Model Year	05'-06'
Volumetric Efficiency:	0.8	Make	Ford
Naturally Aspirated Gasoline & Diesel Engines Enter "0.8"		Model	F-150
Super Charged Diesel Engines Enter "1.30"		Engine Specs	300HP V8
Turbocharged Diesel Engines Enter "1.75"			
		_	
Based on the information entered above, the			
estimated CFM of the vehicle at maximum Horse			
Power is:	381		

Liters:	5.4					
Cubic Inches:	329.5					
Vehicle Information						
Model Year 05'-06'						
Make	Ford					

CYCLE FACTOR	
	Cycle Factor
4 Cycle Diesel and Gasoline Engine	2
2 Cycle Diesel and Gasoline Engine	1

VOLUMETRIC EFFICIENCY	Volumetric Efficiency
	(Approximate)
Naturally Aspirated Gasoline & Diesel Engines	0.8
Supercharged Diesel Engines	1.30
Turbocharged Diesel Engines	1.75
Note: The 1.75 volumetric efficiency is applicable only at top gov	erned engine speed under
full load conditions.	

EQUATION

The following is a method of determining approximated gasoline and diesel engine air flow requirement:

<u>RPM</u> x Volumetric Efficiency Air Flow (CFM) = <u>Displacement (cubic inches)</u> x _____ Cycle Factor 1728

EXAMPLE

Information necessary to calculate air consumption:

Ford F250 7.3L V8 Diesel Truck

4 cycle, 2800 RPM, 443.1 (cubic inches) displacement, turbocharged

Air Flow (CFM) : <u>443.1</u> x <u>2800</u> x 1.75 = 628 CFM 1728 2

MULTISIZER AccuComp® 1.19

16 Feb 200{

200

.

POWDER TECHNOLOGY, INC.

14331 Ewing Avenue South Burnsville, Minnesota 55306 Phone: 952-894-8737

· · · ·

Filename: Group ID: Sample ID: Comment: Operator: Electrolyte: Dispersant: Aperture Size:

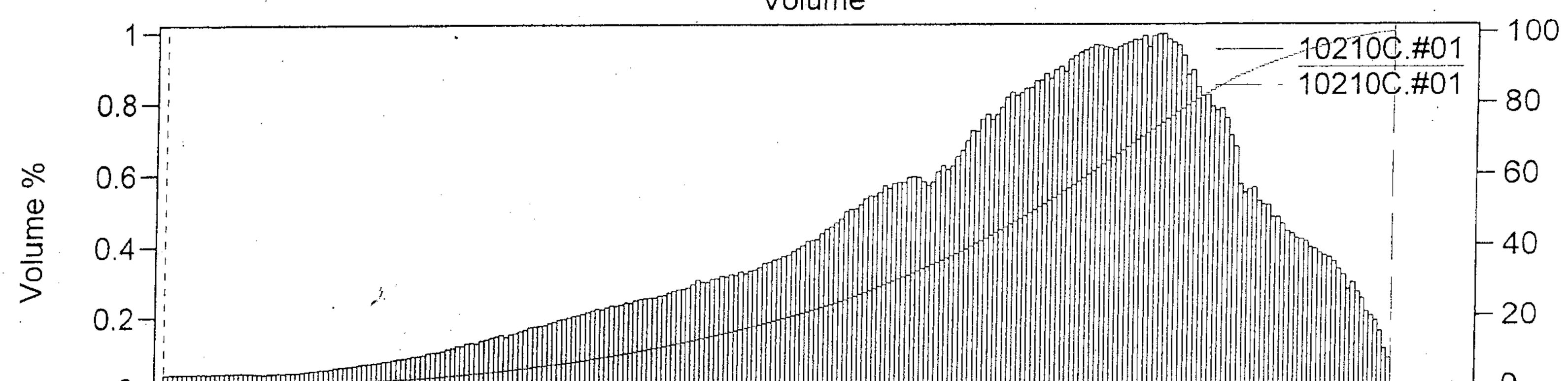
 10210C.#01
 Sample Number: 200

 10210C
 ISO 12103-1, A4 COARSE TEST DUST

 SAE COARSE TEST DUST, NIST TRACEABLE
 LHA

 ISOTON II
 TYPE IC

 400 μm
 10210d.#01


 200 μm
 10210d.#02

Acquired: Serial Number: Edited size data 100 μm10210d.#0330 μm10210d.#0423:0416 Feb 2009123

. . .

Volume

·

Particle Diameter (μ m) LC= 0.711 μ m UC= 149.0 μ m {100.00%}

10

8

6

Volume Statistics (Geometric)

S.D.:

Variance:

10210C.#01

46.6 µm

2170 µm²

. .

20

Micron Size	Cumulative Volume %
1	less than 0.6
2	2.4
3	4.5
4	6.7
5	8.9
.7	13.0

60

40

100

% > 10 25 50 75 90 Size μm 81.25 54.43 31.23 13.97 5.507

MULTISIZER AccuComp® 1.19

16 Feb 200

.

-

- POWDER TECHNOLOGY, INC. -----

10210C.#01

•

Channel	Particle	Diff	Cum <	. Diff	Cum <	
Number	Diameter	Number	Number		-	
	μm	%	%			
	Diameter	Number	Number	Diff Volume % 0.187 0.194 0.201 0.201 0.201 0.209 0.243 0.279 0.324 0.374 0.430 0.503 0.590 0.670 0.745 0.846 0.939 1.03 1.12 1.20 1.27 1.37 1.50 1.57 1.65 1.80 1.96 2.16 2.43 2.67 2.85 2.92 3.04 3.44 3.81 4.12 4.30 4.53 4.76	Cum < Volume % 0 0.187 0.380 0.581 0.782 0.978 1.19 1.43 1.71 2.03 2.41 2.84 3.34 3.93 4.60 5.35 6.19 7.13 8.16 9.29 10.48 11.76 13.13 14.63 16.20 17.84 19.64 21.60 23.76 26.19 28.86 31.71 34.63 37.66 41.10 44.91 49.03 53.33 57.86	
186	33.84	0.005	99.98	4.30	49.03	

MATERIAL SAFETY DATA SHEET

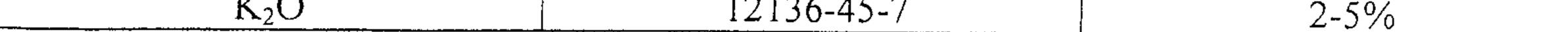
Section 1: Product/Company Information

Identity: Arizona sand including Arizona Test Dust, Arizona Road Dust, Arizona Silica, AC Fine and AC Coarse Test Dusts, SAE Fine and Coarse Test Dusts, J726 Test Dusts, ISO 12103-1, A1 Ultrafine Test Dust, ISO 12103-1, A2 Fine Test Dust, ISO 12103-1, A3 Medium Test Dust and ISO 12103-1, A4 Coarse Test Dust, MIL STD 810 Blowing Dust.

Mfg. Name: Powder Technology Inc. 14331 Ewing Avenue S.

Emergency Number: (952) 894-8737 Number for Info: (952) 894-8737 Date Updated: 9 January 2008

Burnsville, MN 55306


Section 2: Emergency and First Aid					
Eyes:	Immediately flush eye thoroughly with water. Get medical attention if irritation persists.				
Skin:	N/A				
Inhalation:	Remove person to fresh air. If breathing is difficult, administer oxygen. If not breathing, give artificial respiration. Seek medical help if coughing and other symptoms do not subside.				
Ingestion:	Do not induce vomiting. If conscious, have the victim drink plenty of				

water and call a physician if discomfort is experienced.

Section 3: Composition Information

Typical chemical composition:

Chemical	CAS Number	Percent of Weight
SiO ₂	14808-60-7	68-76%
Al ₂ O ₃	1344-28-1	10-15%
Fe ₂ O ₃	1309-37-1	2-5%
Na ₂ O	1313-59-3	2-4%
CaO	1305-78-8	2-5%
MgO	1309-48-4	1-2%
TiO ₂	13463-67-7	0.5-1.0%
K-O	12126 15 7	2 50/

Loss on Ignition 2 - 5 %

All components of this material are included on the TSCA Inventory.

Page 1 of 4 Arizona Test Dust MSDS

9 Jan 2008

Section 4: Hazardous Ingredients/Identity Information

This product contains free silica. Inhalation of dust may be harmful to your health. NIOSH has recommended a PEL of 0.05 mg/m³ as determined by a full shift sample up to 10 hours working day, 40 hours per week.

H.M.I.S. ratings: Health – * Flammability – 0 Reactivity - 0 * see Section 5 of this MSDS for further information on health effects

Section 5: Hazard Identification

Potential Health Effects: Potential health effects may vary depending upon the duration and degree of exposure. To reduce or eliminate health hazards associated with this product, use exposure controls or personal protection methods as described in Section 12.

Eye Contact: (Acute/Chronic) Exposure to airborne dust may cause immediate or delayed irritation or inflammation of the cornea.

Inhalation: (Chronic) Inhalation exposure to free silica may cause delayed lung injury, including silicosis, a disabling and potentially fatal lung disease, and/or cause or aggravate other lung diseases or conditions.

Carcinogenic Potential: This product contains free silica, which IARC classifies as a known human carcinogen. The NTP, in its Ninth Annual Report on Carcinogens, classified "silica, crystalline

(respirable)" as a known carcinogen.

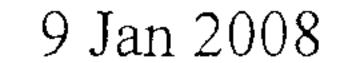
Section 6: Accidental Release Measures

Use clean-up methods that do not disperse dust into the air. Avoid inhalation of dust and contact with eyes. Use exposure control and personal protection methods as described in Section 12.

Section 7: Physical/Chemical Data

Boiling Point: Specific Gravity $(H_20 = 1.0)$: Vapor Pressure: Solubility in Water: **Appearance:** Odor:

 4040^{0} F 2.65 Not applicable Insoluble Tan, Brown, Light Brown, Reddish Brown. No Odor


Physical State: Vapor Density:

1997) - Alexandre Alexandre - Alexandre

Solid Not applicable

Arizona Test Dust MSDS

Section 8: Fire and Explosion Hazard Data

Flash Point: None

Auto ignition Temperature: Not combustible Flammable Limits: N/A

Extinguishing Media: Not Combustible

Hazardous Combustion Products: None

Lower Explosive Limit: None

Upper Explosive Limit: None

Special Fire Fighting Procedures: None

Unusual Fire and Explosion Hazards: None

Section 9: Stability and Reactivity Data

Stability: Incompatibility (Materials to Avoid): Hazardous Decomposition: Hazardous Polymerization: Product is stable Strong Acids Will not occur Will not occur

Section 10: Handling and Storage

Handle and store in a manner so that airborne dust does not exceed applicable exposure limits. Use adequate ventilation and dust collection. Use exposure control and personal protection methods

Section 11: Toxicological Information

Conditions aggravated by exposure: Eye disease, Skin disorders and Chronic Respiratory conditions.

Section 12: Exposure Control/Personal Protection

Respiratory Protection: Use local exhaust or general dilution ventilation to control dust levels below applicable exposure limits. Minimize dispersal of dust into the air. Use appropriate NIOSH approved respiratory protection for respirable crystalline silica.

Eye Protection: Wear safety glasses with side shields or goggles to avoid contact with the eyes. In extremely dusty environments and unpredictable environments, wear tight-fitting unvented or

indirectly vented goggles to avoid eye irritation or injury.

Page 3 of 4 A

Arizona Test Dust MSDS

-

9 Jan 2008

Section 13: Disposal Considerations

All disposal methods must be in accordance with all Federal, State/Provincial and local laws and regulations. Regulations may vary in different locations. Waste characterization and compliance with applicable laws are the responsibility solely of the waste generator.

Section 14: Transportation Data

Arizona Test Dust is not hazardous under U.S. DOT or TDG regulations.

Section 15: Other Regulatory Information

Status under US OSHA Hazard Communications Rule 29 CFR 1910.1200:

Status under CERCLA/Superfund, 40 CFR 117 and 302:

Hazard Category under SARA (Title III), Sections 311 and 312:

Status under SARA (Title III), Section 313:

Silica sand is considered a hazardous chemical under this regulation and should be included in the employer's hazard communication program.

Not listed

Silica sand qualifies as a hazardous substance with delayed health effects.

Not subject to reporting requirements under

Status under Canadian Environmental Protection Act:

Section 313

Section 16: Other Information

Not listed.

The information and recommendations contained herein are based upon data believed to be correct. However, no guarantee or warranty of any kind, express or implied, is made with respect to the information contained herein. It is the user's obligation to determine the conditions of safe use of this product.

Page 4 of 4

Arizona Test Dust MSDS

.

9 Jan 2008